设2x=m,8y=n,mn/16=m+n>=2倍的根号mn又m>0,n>0,所以nm>=1024,所以xy>=64,min(xy)=64 又(x-8)(y-2)=16,x>=8,y>=2,(x-8)(y-2)<=[(x-8)+(y-2)])[(x-8)+(y-2)]/4,x-8+y-2>=8,min(x+y)=18
1.0=2X+8y-xy≥8√(xy)-xy√(xy)[8-√(xy)]≤0√(xy)≥8xy≥64当2X=8y,即x=16,y=4时取最小值。2.