(1)。
证明:连接BD,则BD为○o的直径(因为四边形ABCD是正方形,BD为它的对角线)
∴∠BED=90°
∴∠EBD+∠EDB=90°
即∠EBA+∠ABD+∠EDB=90°
∵∠ABD=45°
∴∠EBA+∠EDB=45°
又∵∠ADF+∠EDB=45°
∴∠ADF=∠ABE
∵AB=AD,BE=DF
∴△ADF≌△ABE(SAS)
(2).
解:理由如下:
∵△ADF≌△ABE
∴∠EAB=∠DAF
∵∠BAF+∠DAF=90°
∴∠BAF+∠EAB=90°
又∵AE=AF
∴△AEF是等腰直角三角形
∵BE=DF
∴DE-BE=EF
又∵EF=根号2AE
∴DE-BE=根号2AE
(3)
BE-DE=根号2AE