求sin^2(x)dx的不定积分,有悬赏!

2025-05-23 01:09:19
推荐回答(3个)
回答1:

求不定积分∫sin²xdx
解:原式=∫[(1-cos2x)/2]dx=(1/2)x-(1/2)∫cos2xdx=(1/2)x-(1/4)∫cos2xd(2x)=(1/2)x-(1/4)sin2x+C
关于∫sinⁿxdx有递推公式:
∫sinⁿxdx=-(sinⁿֿ¹xcosx)/n+[(n-1)/n]∫sinⁿֿ²xdx.
∫sin⁴xdx=-∫sin³xd(cosx)=-[sin³xcosx-3∫cos²xsin²xdx]=-sin³xcosx+3[∫(1-sin²x)sin²xdx]
=-sin³xcosx+3∫sin²xdx-3∫sin⁴xdx
故移项有4∫sin⁴xdx=-sin³xcosx+3∫sin²xdx=-sin³xcosx+3[(1/2)x-(1/4)sin2x]+C
=-sin³xcosx-(3/4)sin2x+(3/2)x+C=-sin³xcosx-(3/2)sinxcosx+(3/2)x+C
=-sinxcosx(sin²x+3/2)+(3/2)x+C₁
故∫sin⁴xdx=-(1/4)sinxcosx(sin²x+3/2)+6x+4C₁=-(1/8)sin2x(sin²x+3/2)+6x+C.

回答2:

见附图。

回答3:

∫ sin²x dx = ∫ (1-cos2x)/2 dx = x/2 - sin2x /4 + C
∫ (sinx)^4 dx = (1/4) ∫ (1-cos2x)^2 dx = (1/4) ∫ [ 1- 2cos2x + (cos2x)^2] dx
= x/4 - cos2x /4 + (1/8) ∫ (1+ cos4x) dx
= 3x/8 - cos2x /4 + sin4x /32 + C