(2)an=a1*q^(n-1)=1*(1/2)^(n-1)=(1/2)^(n-1)
cn=nan=n/2^(n-1)
Tn=1/2^0+2/2^1+3/2^2+……+n/2^(n-1) ①
故
1/2*Tn=1/2*[1/2^0+2/2^1+3/2^2+……+(n-1)/2^(n-2)+n/2^(n-1)]
=1/2^1+2/2^2+3/2^3+……+(n-1)/2^(n-1)+n/2^n ②
①-②,得
1/2*Tn=1/2^0+(2-1)/2^1+(3-2)/2^2+……+[n-(n-1)]/2^(n-1)-n/2^n
=1+1/2+1/2^2+……+1/2^(n-1)-n/2^n
=1*(1-1/2^n)/(1-1/2)-n/2^n
=2-1/2^(n-1)-n/2^n
故
Tn=4-(2+n)/2^(n-1)