(Ⅰ)∵an+1=
,a1=1.an an+1
∴an≠0,
∴
=1 an+1
+1,1 an
即
?1 an+1
=1.1 am
∴{
}是以1为首项,1为公差的等差数列.1 an
∴
=1 an
+(n?1)×1=n.1 a1
∴an=
.1 n
(Ⅱ)bn=2
?n=2n-n,1 an
∴Sn=b1+b2+…+bn
=(2+22+23+…+2n)-(1+2+…+n)
=2n+1?2?
.n(n+1) 2
∵Sn?2n+1+47<0.
即2n+1?2?
?2n+1+47<0,n(n+1) 2
∴n2+n-90>0,
∴n>9或n<-10.
∵n∈N*,
∴n>9.即n≥10.
∴n的最小值为10.