n条直线相交,平面分成2n个部分对顶角:因为一对对顶角要小于pi,所以由对称性我们可以只考虑一半,即只考虑连续的n个部分中有多少个不同的角即可,角的数量为<1,n>+<2,n>+...+,其中<1,n>为n中选1的组合数,最后整理结果为2^n-2.(<0,n>+<1,n>+...+=2^n,2^n表示2的n次方)邻补角:一对对顶角可以找到4对邻补角(画图很容易看出),而这4对邻补角也可由另一对与该对互补的对顶角找到,所以邻补角个数为4*(2^n-2)/2=2^(n+1)-4 说的不清楚的地方请指出