(1)证明:∵AB=AC,
∴∠ABC=∠C,
∵∠C=∠D,
∴∠ABC=∠D;
(2)证明:∵∠ABC=∠D,∠BAE=∠DAB(公共角),
∴△ABE∽△ADB,
∴
=AB AD
,AE AB
∴AB2=AE?AD,
∵AB=AC,
∴AC2=AE?AD;
(3)解:连接OB,
∵AB=AC,
∴
=AB
,AC
∴AH⊥BC,BH=
BC=1 2
×6=3,1 2
∴AH=
=4,
AB2?BH2
设OA=x,则OH=4-x,
在Rt△OBH中,OB2=OH2+BH2,
即:x2=(4-x)2+9,
解得:x=
.25 8
∴⊙O的半径为:
.25 8