求解数学题xydy⼀dx=y2+x2,y(1)求解微分方程

2025-05-11 21:04:35
推荐回答(2个)
回答1:

令:u=y/x
则:y=xu dy/dx=u+xdu/dx
由:(x^2+y^2)dx=xydy
dy/dx=(x^2+y^2)/xy=x/y + 1/[x/y]
dy/dx=u+xdu/dx=u+1/u
xdu/dx=1/u
udu=1/x dx
1/2 u^2=ln|x| +c1
u=y/x= [ln(x^2) +c)]^(1/2)
y=x[ln(x^2) +c)]^(1/2)

http://zhidao.baidu.com/question/175876418.html

回答2:

等于2ydx