5、因为 Sn=n^2+3n+2
所以 an=Sn-Sn-1
=(n^2+3n+2)-[(n-1)^2+3(n-1)+2]
=2n-1;
6、因为 Sn=1/2(3n^2-n)
所以 a5=S5-S4
=1/2(3x5^2-5)-1/2(3x4^2-4)
=1/2(75-5)-1/2(48-4)
=35-22
=13;
7、 因为 Sn=n^2-2n+1=(n-1)^2
所以 a7+a8+a9 =(9-1)^2-(6-1)^2
=64-25
=39;
8、因为 Sn=n^2+2n
所以 a4+a5+a6+a7=S7-S3
=(7^2-2x7)-(3^2-2x3)
=35-3
=32。
5、Sn=n²+3n+2①
则当n≥2时:S(n-1)=(n-1)² + 3(n-1) + 2
=n²-2n+1+3n-3+2=n²+n②
①-②:Sn - S(n-1)=2n+2
∴an=2n+2,(n≥2)
则当n=1时:a1=2•1+2=3
∵a1=S1=1²+3•1+2=6
∴S1≠a1
∴an=6,(n=1)
an=2n+2,(n≥2)