xseca-ytana>=sqr(x^2-y^2)
等价于xseca>=sqr(x^2-y^2)+ytana
两边平方得x^2*(seca)^2>=x^2-y^2+y^2*(tana)^2+2ytana*sqr(x^2-y^2)
因为(seca)^2=1+(tana)^2
所以原式等价于x^2*(tana)^2>=y^2*(tana)^2+2ytana*sqr(x^2-y^2)-y^2
即(x^2-y^2)*tana^2>=2ytana*sqr(x^2-y^2)-y^2
即y^2>=sqr(x^2-y^2)*tana(2y-sqr(x^2-y^2)*tana)
下面证明上面的式子
如果2y<=sqr(x^2-y^2)*tana则结论显然成立
否则对右边应用均值不等式
[sqr(x^2-y^2)*tana][2y-sqr(x^2-y^2)*tana]
<=[(sqr(x^2-y^2)*tana+2y-sqr(x^2-y^2)*tana)/2]^2
=y^2
证毕