f(x)=1*2x+2*3x²+...
=(1*x²+2*x³+...)'
=[x(x+2x²+3x³+...)]'
而我们知道x+2x²+3x³+...=x/(1-x)²
所以f(x)=[x²/(1-x)²]'
求导就自己写了
S(x) = 1·2x + 2·3x^2 + 3·4x^3+ ......
= ∑
= [∑
= {[∑
= {[x^3/(1-x)]' - 2x^2/(1-x)}' = {[-x^2-x-1+1/(1-x)]' + 2x+2-1/(1-x)}'
= {-2x -1 + 1/(1-x)^2 + 2x + 2 - 1/(1-x)}'
= [1 + 1/(1-x)^2 - 1/(1-x)]' = 2/(1-x)^3 - 1/(1-x)^2
= (1+x)/(1-x)^3 ( |x| < 1 )