已知x^2+y^2+z^2=1,求2xy+yz的最大值

2025-05-12 02:45:43
推荐回答(1个)
回答1:

令y =sin a ; x = cos a sin b ; z = cos a cos b,a,b∈[0,π/2]
2xy+yz=y(2x+z)
= sin a ( 2 cos a sin b + cos a cos b )
= sin a cosa ( 2sin b + cos b )
=(√5/2)sin 2a * sin(b+arctan1/2)
<=(√5/2)
当且仅当sin2a=sin(b+arctan1/2)=1取等号
2a=b+arctan1/2=π/2
a=π/4, b=π/2-arctan1/2
sina=cosa=√2/2
sinb=cos(arctan1/2)=2/√5
cosb=sin(arctan1/2)=1/√5
此时, y =sin a=√2/2 ; x = cos a sin b=√10/5 ; z = cos a cos b= √10/10
2xy+yz=y(2x+z)=√2/2 (2√10/5 + √10/10)= √5/2 为最大值