非负实数x,y,z满足x2+y2+z2+x+2y+3z=134,那么x+y+z的最大值为(  )A.12B.1C.32D.

2025-05-20 14:14:50
推荐回答(1个)
回答1:

x2+y2+z2+x+2y+3z=

13
4

可得:(x+
1
2
2+(y+1)2+(z+
3
2
2=
27
4

设x+
1
2
=w,y+1=v,z+
3
2
=u,得(x+
1
2
2+(y+1)2+(z+
3
2
2=w2+v2+u2=
27
4

∴x+y+z=w+y+z-3
∵(w+v+u)2≤(12+12+12)(w2+v2+u2)=
81
4

∴-
9
2
≤w+v+u≤
9
2

当且仅当,w=v=u=
3
2
时,w+v+u的最大值为
9
2
,此时x+
1
2
=y+1=z+
3
2

由此可得:x+y+z的最大值为
9
2
-3
=
3
2

故选:C.