(1)∵a2=a1+2,a3=a2+22,a4=a3+23,an=an-1+2n-1(n≥2)相加,得an=a1+2+22+…+2n-1=2n-1,又a1=1符合上式∴an=2n-1,(2)bn=n?2n,Sn=2+2?22+3?23++n?2n,2Sn=22+2?23++(n-1)?2n+n?2n+1,∴Sn=-(2+22+23++2n)+n?2n+1=2-2n+1+n?2n+1 .