如图,AC⊥BC,BD⊥AD,AC=BD,AC、BD交于点O,求证:OC=OD

如图,AC⊥BC,BD⊥AD,AC=BD,AC、BD交于点O,求证:OC=OD.
2025-05-13 23:15:34
推荐回答(1个)
回答1:

证明:∵AC⊥BC,BD⊥AD,
∴∠D=∠C=90°,
∵在Rt△ADB和Rt△BCA中,

AC=BD
AB=BA

∴Rt△ADB≌Rt△BCA(HL),
∴∠DBA=∠CAB,
∴OA=OB,
∴AC-OA=BD-OB,即OC=OD.