请问学习哪些内容的基础上再学习异面直线的公垂线的

2025-06-22 11:08:32
推荐回答(1个)
回答1:

先设公垂线与两直线的交点坐标,根据它们确定的向量分别与二直线的方向向量
垂直求出交点坐标,再由交点坐标求出直线方程.
例:L1:(x-1)/2=(y-1)/(-1)=(z-1)/(-1).L2:(x-1)/1=(y-5)/(-3)=z/2
解:设二直线的公垂线与L1、L2交于A(2m+1,-m+1,-m+1)、B(n+1,-3n+5,2n)
向量BA=(2m-n,-m+3n-4,-m-2n+1)是公垂线的一个方向向量。
L1的方向向量是(2,-1,-1),L2的方向向量是(1,-3,2)
有2(2m-n)-(-m+3n-4)-(-m-2n+1)=0
即 2m-n+1=0 (1)
(2m-n)-3(-m+3n-4)+2(-m-2n+1)=0
即 3m-14n+14=0 (2)
由(1)(2) 解得 m=0 且 n=1
A(1,1,1),B(2,2,2),向量AB=(1,1,1)
所以 直线AB的公垂线方程是(x-1)/1=(y-1)/1=(z-1)/1
即x=y=z