由条件Sn+Sn?1=3n2(n≥2)得Sn+1+Sn=3(n+1)2,
两式相减得an+1+an=6n+3,
故an+2+an+1=6n+9,两式再相减得an+2-an=6,
由n=2得a1+a2+a1=12,a2=12-2a,
从而a2n=6n+6-2a;n=3得a1+a2+a3+a1+a2=27,a3=3+2a,从而a2n+1=6n-3+2a,
由条件得
,
a<12?2a 6n+6?2a<6n?3+2a 6n?3+2a<6(n+1)+6?2a
解之得
<a<9 4
,15 4
故答案为:(
,9 4
)15 4