关于绝对值的题目

设x,y,a都是整数,|x|=1-a,|y|=2+2a-a²,则a=?理由
2025-06-22 15:00:38
推荐回答(3个)
回答1:

x的绝对值大于等于0,所以1-a≥0
所以a≤1
y的绝对值=-(a-1)^2+3≥0
所以(a-1)^2≤3 解得1-√3≤a≤1+√3
这之间的整数有0,1,2
由于前面a≤1
所以结果只取0,1

回答2:

1-a>=0
2+2a-a*a>=0
推出
a=1或0

回答3:

|x|=1-a大于0,a小于1
|y|=2+2a-a²大于0,a大于1+根3 小于1-根3
两式同时成立,且a为整数,所以a=-1