解:∵ (x^n)e^-x=[x/e^(x/n)]^n而由题中的图可知n>0,从而有lim(x→+∞)x/e^(x/n)=lim(x→+∞)1/[(1/n)e^(x/n)]=0,∴ lim(x→+∞)(x^n)e^-x=0^n=0.