解:
设 δ 是任意小的正数, 并假设 0 < δ < 0.1
1)
x = (±1) * ( 1 - δ ) 时, x^4 < f(x ) < x^2
x = (±1) * ( 1 + δ ) 时,, x^2 < f(x ) < x^4
但 (x--> ±1 ) lim { x^2 } = 1 , (x--> ±1 ) lim { x^4 } = 1 ,
故 (x--> ±1 ) lim { f(x) } = 1 ,
2)
x = ± δ 时, x^4 < f(x ) < x^2
但 (x--> 0 ) lim { x^2 } = 0 , (x--> 0 ) lim { x^4 } = 0 ,
故 (x--> 0 ) lim { f(x) } = 0,