解:f(1/x)=(b/x+1)/(2/x+a)=(b+x)/(2+ax)
k=f(x)f(1/x)=[(bx+1)/(2x+a)]*[(b+x)/(2+ax)]
=(b/2a)*[(x+1/b)/(x+a/2)]*[(x+b)/(x+2/a)]
对于任意x都成立
有∵ab≠2
∴1/b=2/a且b=a/2
a=2b
k=(b/4b)[(x+1/b)/(x+b)][(b+x)/(x+1/b)]=1/4
∴k=1/4
f(x)=(bx+1)/2(x+b)
f(1)=1/2
所以f(f(1))=f(1/2)=(b/2+1)/(1+2b)=k/2=1/8
所以4b+8=1+2b
b=-7/2
a=2b=-7