球O球面上有三点A、B、C,已知AB=18,BC=24,AC=30,且球半径是球心O到平面ABC的距离的2倍,求球O的表面

2025-05-05 10:30:30
推荐回答(1个)
回答1:

解答:解:球面上三点A、B、C,平面ABC与球面交于一个圆,三点A、B、C在这个圆上
∵AB=18,BC=24,AC=30,
AC2=AB2+BC2,∴AC为这个圆的直径,AC中点M圆心
球心O到平面ABC的距离即OM=球半径的一半=

1
2
R
△OMA中,∠OMA=90°,OM=
1
2
R,AM=
1
2
AC=30×
1
2
=15,OA=R
由勾股定理(
1
2
R)2+152=R2
3
4
R2=225
解得R=10
3

球的表面积S=4πR2=1200π(面积单位)