如图(1),在直角△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,若

2025-06-22 03:52:12
推荐回答(1个)
回答1:

证明:(1)如图1,连接DE,
∵AC=mBC,CD⊥AB,当m=1,n=1时
∴AD=BD,∠ACD=45°,
∴CD=AD=

1
2
AB,
∵AE=nEC,
∴DE=AE=EC=
1
2
AC,
∴∠EDC=45°,DE⊥AC,
∵∠A=45°,
∴∠A=∠EDG,
∵EF⊥BE,
∴∠AEF+∠FED=∠FED+∠DEG=90°,
∴∠AEF=∠DEG,
∴△AEF≌△DEG(ASA),
∴EF=EG.

(2)解:EF=
1
n
EG,
证明:如图2,作EM⊥AB于点M,EN⊥CD于点N,
∵EM∥CD,
∴△AEM∽△ACD,
EM
CD
AE
AC
=
1
n+1

即EM=
1
n+1
CD,
∵EN∥AD,
∴△CEN∽△CAD,
EN
AD
CE
AC
=
n
n+1

∴EN=
n
n+1
AD,
∵∠ACB=90°,CD⊥AB,
∴∠ACB=∠ADC=90°,
又∵∠A=∠A,
∴△ACD∽△ABC,
CD
AD
=
BC
AC
=1,
EM
EN
=1×
1
n
=
1
n

又∵EM⊥AB,EN⊥CD,
∴∠EMF=∠ENG=90°,
∵EF⊥BE,
∴∠FEM=∠GEN,
∴△EFM∽△EGN,
EF
EG
=
EM
EN
=
1
n

即EF=
1
n
EG;

(3)证明:如图2,作EM⊥AB于点M,EN⊥CD于点N,
∵EM∥CD,
∴△AEM∽△ACD,
EM
CD
AE
AC
=
1
n+1

即EM=
1
n+1
CD,
∵EN∥AD,
∴△CEN∽△CAD,
EN
AD
CE
AC
=
n
n+1

∴EN=