a^2+1/a^2=(a+1/a)^2-2
目标式可变成√[(a+1/a)^2-2]-√2-a-1/a+2
设f(a)=√[(a+1/a)^2-2]-√2-a-1/a+2 (a>0)
因为a+1/a>=2 所以当a+1/a=2时f(a)有最小值0
所以f(a)>=0
移项 √(a^2+1/a^2)-√2≥a+1/a-2
得证。
如果你认可我的回答,请及时点击采纳为【满意回答】按钮
手机提问者在客户端右上角评价点“满意”即可。
你的采纳是我前进的动力! 如还有新的问题,请另外向我求助,答题不易,谢谢支持…