已知方程x2+(2k+1)x+k-1=0的两个实数根x1,x2满足x1-x2=4k-1,则实数k的值为(  )A.1,0B.-3,0C

2025-05-18 11:32:53
推荐回答(1个)
回答1:

方程x2+(2k+1)x+k-1=0的两个实数根为x1,x2
则x1+x2=-(2k+1),x1x2=k-1.
∵(x1-x22=(x1+x22-4x1x2
∴(4k-1)2=[-(2k+1)]2-4(k-1),
∴(4k-1)2-(2k+1)2+4(k-1)=0,
即(4k-1+2k+1)(4k-1-2k-1)=-4(k-1),
∴6k(2k-2)-4(k-1)=0,
∴(k-1)(12k-4)=0,
解得k=1或

1
3

故选D.