方程x2+(2k+1)x+k-1=0的两个实数根为x1,x2;则x1+x2=-(2k+1),x1x2=k-1.∵(x1-x2)2=(x1+x2)2-4x1x2∴(4k-1)2=[-(2k+1)]2-4(k-1),∴(4k-1)2-(2k+1)2+4(k-1)=0,即(4k-1+2k+1)(4k-1-2k-1)=-4(k-1),∴6k(2k-2)-4(k-1)=0,∴(k-1)(12k-4)=0,解得k=1或 1 3 .故选D.