解答:证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°,在△BDF和△CDE中, ∠BDF=∠CDE ∠BFD=∠CED BF=CE ,∴△BDF≌△CDE(AAS),∴DE=DF(全等三角形的对应边相等),∵BE⊥AC,CF⊥AB,∴AD是∠BAC的平分线.