已知x,y,z都属于实数,求(xy+2yz)⼀(x^2+y^2+z^2)的最大值

需要过程或提示
2025-05-18 22:59:10
推荐回答(1个)
回答1:

(1)x^2,y^2,z^2都是>0的,所以当x>0,y>0,z>0的时候可以得到最大值。(或者全负),我们不妨假设x,y,z都是>0的。 (2)当xx^2 而2yz<=y^2+z^2 所以我们只有在x>y=z的情况下得到最大值 (xy+2yz)/(x^2+y^2+z^2) =(xy+2y^2)/(x^2+2y^2) z=y =k xy+2y^2=kx^2+2ky^2 (2k-2)y^2-xy+kx^2=0 这个关于y的方程的判别式 =x^2-4*(2k-2)*kx^2>=0 (保证y有解) x^2*(1-8(k-1)k)>=0 (x^2>=0) 1-8(k-1)k>=0 -8k^2+8k+1>=0 8k^2-8k-1<=0 所以1/2-√6/4<=k<=1/2+√6/4 所以k的最大值为1/2+√6/4