(1)∵数列{an}为等差数列
由a1+a2+a3=12可得3a2=12
∴a2=4,又a1=2∴d=2,
数列的通项公式为an=2n
(2)由(1)可得bn=32n=9n
{bn}是首项为9,公比为9的等比数列
Sn=
=9(1?9n) 1?9
(9n?1)9 8
(3)由(1)知 Cn=
=1 2n(2n+2)
=1 4n(n+1)
(1 4
?1 n
)1 n+1
Tn=C1+C2+…+Cn
=
(1?1 4
+1 2
?1 2
+…+1 3
?1 n
)1 n+1
=
(1?1 4
)=1 n+1
n 4(n+1)