首页
15问答网
>
已知函数f(x)=ax2-2x+lnx,若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于-2⼀3 这道题的具体解
已知函数f(x)=ax2-2x+lnx,若f(x)有两个极值点,求a的取值范围,并证明f(x)的极小值小于-2⼀3 这道题的具体解
2025-06-21 21:44:47
推荐回答(1个)
回答1:
f'(x)=2ax-2+(1/x)=0
2ax^2-2x+1=0
判别式=4-8a>0,且a不为0
因此a<2,且a不为0
f"(x)=4a-1/x^2>0,故a>0
ax^2>4,x>√(4/a)
再代入算一下
相关问答
最新问答
三星999外屏黑了功能健好使怎么回事
我的三星s7曲面屏被翻盖上的杂质垫了个小点。怎么擦都擦不掉。牙膏不
谁有夏目友人帐的全部中文歌词,要全是中文的
三十来岁,一路走来都是浑浑噩噩的,为什么我的人生会是这样,真的不想再这样下去了?
大学生适合戴什么款式的手表?
这个女孩长得怎样?此图为纯素颜
关于Story的两个句子翻译
武林外传天剑装备选择
银联和visa master 的卡有什么分别吗
“2013年农历9月16下午15点45分出生的男孩起名父亲姓刘母亲姓王