解答:解(1)∵a1=1,an+1═
an
an+3
,
∴
1
an+1
=
an+3
an
=1+
3
an
,
即
1
an+1
+
1
2
=
3
an
+
3
2
=3(
1
an
+
1
2
),
则{
1
an
+
1
2
}为等比数列,公比q=3,
首项为
1
a1
+
1
2
=1+
1
2
=
3
2
,
则
1
an
+
1
2
=
3
2
•3n-1,
即
1
an
=-
1
2
+
3
2
•3n-1=
1
2
(3n-1),即an=
2
3n-1
.
(2)bn=(3n-1)•
n
2n
•an=
n
2n-1
,
则数列{bn}的前n项和Tn=
1
1
+
2
2
+
3
22
+…+
n
2n-1
①
1
2
Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
②,
两式相减得
1
2
Tn=1+
1
2
+
1
22
+…+
1
2n-1
-
n
2n
=
1-(
1
2
)n
1-
1
2
-
n
2n
=2-
1
2n-1
-
n
2n
=2-
n+2
2n
,
则 Tn=4-
n+2
2n-1
.