罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,描述如下:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f'(ξ)=0。函数x的绝对值,不符合罗尔中值定理中第(2)条它在 x = 0 处不可导