三角形ABC是圆O的内接三角形,角BAC等于30度,D是BC弧的中点,AD等a,则四边形ABCD的面积等于多少?

2025-05-18 03:21:06
推荐回答(1个)
回答1:

圆心为o,所以∠BOC=2∠BAC=60°,D为BC弧中点,所以AD为圆直径为a,能得出BC=a/2,设E为BC与AD交点,ABCD面积=ABC面积+BCD面积=(AE*BC)/2+(DE*BC)/2=(AD*BC)/2=4分之a的平方。