a+b+c=0a+b=-ca+c=-bb+c=-a所以1/(b²+c²-a²)=1/(b²+(c+a)(c-a))=1/(b²+(-b)(c-a))=1/(b(b-c+a))=1/(b(-c-c))=-1/(2bc)同理1/(c²+a²-b²)=-1/(2ac)1/(a²+b²-c²)=-1/(2ab)所以1/(b²+c²-a²)+1/(c²+a²-b²)+1/(a²+b²-c²)=-(a+b+c)/(2abc)=0