解答:(1)证明:连接OD、BD,
∵∠ABC=90°,BA为⊙O的直径,
∴BE是⊙O的切线,∠BDA=90°,
又∵DE切⊙O于点D,
∴EB=ED,
∴∠CBD=∠EDB,
∵∠BDA=90°,
∴∠CDB=90°,
∴∠EDB+∠CDE=90°,∠ACB+∠CBD=90°,
∴∠CDE=∠ACB,
∴EC=ED.
∴EB=EC,
即点E是BC边的中点;
(2)解:∵CF=OF,EC=EB,
∴EF∥BO,
∴∠DOB+∠EDO=180°,
∵∠EDO=90°,
∴∠DOB=90°,
∴∠DOA=90°,
∵OA=OD,
∴∠A=∠ODA=45°,
∴cosA=
.
2
2