(1)函数的定义域为(0,+∞)
求导函数,可得f′(x)=
,1?lnx x2
令f′(x)>0,而x>0,可得0<x<e,
令f′(x)<0,可得x>e,
∴函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞);
(2)①当0<2m≤e,即0<m≤
时,由(1)知,函数f(x)在[m,2m]上单调递增,e 2
∴f(x)max=f(2m)=
-1,ln2m 2m
②当m≥e时,由(1)知,函数f(x)在[m,2m]上单调递减,
∴f(x)max=f(m)=
-1,lnm m
③当m<e<2m,即
<m<e时,由(1)知,函数f(x)在[m,e]上单调递增,(e,2m]上单调递减,e 2
∴f(x)max=f(e)=
-1,1 e
∴f(x)在[m,2m]上的最大值为f(x)max=
.
?1,0<m≤ln2m 2m
e 2
?1,1 e
<m<ee 2
?1,m≥elnm m