偶函数在对称区间上的积分,则
I = 2∫<0,π/2>√[cosx-(cosx)^2]dx = 2∫<0,π/2>√[cosx(1-cosx)]dx
= 2∫<0,π/2>√{2[cos(x/2)]^2-1}*sin(x/2)dx
= -4∫<0,π/2>√{2[cos(x/2)]^2-1}d[cos(x/2)] 令 cos(x/2)=sect/√2
= 2√2∫<0,π/4>sect(tant)^2dt
其中 I1 = ∫sect(tant)^2dt = ∫[(sect)^3-sect]dt
= ∫sectdtant-∫sectdt = secttant-I1-ln(sect+tant),
得 I1 = (1/2)secttant-(1/2)ln(sect+tant)+C,
则 I = √2[secttant-ln(sect+tant)]<0,π/4> = 2-√2ln(1+√2).